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Machine-learning-based analytical framework as a support tool for water and 
sediments quality black-box sensors 
 
Data curation and analytical framework flow 

The developed analytical framework is based on a dataset that included inputs generated, as a 
result of analytical procedures (real data obtained from in-situ sampling and laboratory analysis of both 
water and sediment samples from the sample points presented in figure 1). 

 
Fig. 1. Water and sediments sample points from the studied area 
 
 Therefore, the resulted numerical dataset was used as emphasised in figure 2.  

 
Figure 2. The analytical framework flow 

 
It can be observed that the autoML script was used in order to identify various ML-based 
algorithms’ performance (revealed by the accuracy metrics) in predicting the feature 
importance of the independent variables. Various scenarios were used, targeting to create the 
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baseline for determining Fe, Zn, Cd, Cr, and Ni from both water and sediments, in the studied 
area. The results have targeted to identify the main groups of ML  algorithms, that gather 
different secondary algorithms, characterised by the variations of hyperparameters, that are 
associated with the highest predictive metrics. Also, for the identified main ML algorithms, an 
average value of feature importance associated with each of the independent variables will 
result and, further on, emphasize the power of the predictors in predicting the main dependent 
variable. 
 
Main ML algorithms used for training and validation 
 The following main ML algorithms were used: 
A. Decision Random Forest (DRF) Machine Learning Algorithm - an ensemble learning method 
that constructs multiple decision trees during training and outputs the mean prediction (regression) or 
mode of the classes (classification) of the individual trees. This method is widely used due to its 
robustness, accuracy, and ease of use. It is a versatile algorithm that can handle both classification and 
regression tasks effectively. DRF leverages the power of multiple decision trees to improve the model's 
performance. Each tree is trained on a random subset of the data, ensuring diversity and reducing the risk 
of overfitting. By combining the predictions from multiple trees, the algorithm achieves higher accuracy 
and stability compared to individual decision trees. The algorithm uses bagging, where each decision tree 
is trained on a bootstrapped sample of the training data. This technique helps in reducing variance and 
improving the stability and accuracy of the model. Bagging ensures that each tree is different, which 
enhances the overall performance of the ensemble. During the construction of each tree, DRF randomly 
selects a subset of features to consider for splitting at each node. This randomness helps in creating a 
diverse set of trees, further enhancing the model's robustness. Random feature selection prevents the 
model from relying too heavily on any single feature, improving generalization. In classification tasks, 
DRF uses majority voting to determine the final output. For regression tasks, it averages the predictions 
of individual trees. This ensemble approach mitigates the impact of noisy or inaccurate individual trees, 
leading to more reliable predictions. By combining multiple trees that are trained on different parts of the 
dataset with different features, DRF effectively reduces overfitting, leading to a more generalized model. 
The use of ensemble methods and randomization techniques makes DRF robust against overfitting, even 
with complex datasets. DRF can provide insights into feature importance by measuring how much each 
feature decreases the impurity in a tree. This can be valuable for understanding the underlying patterns in 
the data and for feature selection. Feature importance scores help in identifying the most influential 
features in the dataset, guiding further data analysis and model improvement. 

Several hyperparameters can be tuned to optimize the performance of the DRF 
algorithm:  

- Number of Trees (n_estimators): The number of trees in the forest. More trees can 
improve performance but also increase computational cost.  

- Maximum Depth (max_depth): The maximum depth of each tree. Limiting depth 
helps prevent overfitting.  

- Minimum Samples Split (min_samples_split): The minimum number of samples 
required to split an internal node. Higher values prevent overfitting.  

- Minimum Samples Leaf (min_samples_leaf): The minimum number of samples 
required to be at a leaf node. Setting this parameter can smooth the model.  

- Maximum Features (max_features): The number of features to consider when looking 
for the best split. It introduces randomness to make individual trees more diverse.  

- Bootstrap: Whether bootstrap samples are used when building trees. If False, the 
whole dataset is used to build each tree. 

The DRF algorithm is a powerful tool in machine learning, capable of handling both 
classification and regression tasks effectively. Its ensemble nature, combined with techniques 
like bagging and random feature selection, makes it robust against overfitting and highly 
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accurate. By tuning various hyperparameters, the performance of the DRF can be optimized 
for specific datasets and tasks, making it a versatile choice for many applications. 
 
B. Deep Learning Algorithm - uses neural networks with many layers (hence the term 'deep'). These 
algorithms are designed to recognize patterns, learn from data, and make decisions with minimal human 
intervention. Deep learning has revolutionized fields such as computer vision, natural language 
processing, and speech recognition. Its ability to process and learn from large datasets has led to significant 
advancements in AI capabilities. At the core of deep learning are neural networks, which are inspired by 
the structure and function of the human brain. A neural network consists of an input layer, multiple hidden 
layers, and an output layer. Each layer contains neurons (nodes) that are connected with weights, allowing 
the network to learn complex representations of data. The architecture of these networks enables them to 
capture hierarchical patterns, making them effective for a wide range of tasks.The training process 
involves feeding data into the neural network, where it undergoes forward propagation and 
backpropagation. In forward propagation, the input data passes through the network, and predictions are 
made. During backpropagation, the network adjusts the weights based on the error of the predictions, 
iteratively improving its accuracy. This process is repeated over many iterations, or epochs, to minimize 
the loss function and enhance the model's performance. Activation functions introduce non-linearity into 
the neural network, enabling it to learn and represent complex patterns. Common activation functions 
include ReLU (Rectified Linear Unit), sigmoid, and tanh. These functions help the network capture 
intricate relationships within the data, enhancing its predictive power. Choosing the right activation 
function is crucial for the network's ability to converge and learn effectively. 

There are various types of neural networks, each suited for different tasks. 
Convolutional Neural Networks (CNNs) are primarily used for image recognition and 
processing. Recurrent Neural Networks (RNNs) are effective for sequential data, such as time 
series or natural language. Other types include Generative Adversarial Networks (GANs) for 
generating new data and Transformer networks for handling sequential data efficiently. 

Deep learning models are prone to overfitting due to their high capacity to learn from 
data. Techniques such as dropout, regularization, and early stopping are used to prevent 
overfitting. These methods help the model generalize better to new, unseen data, improving its 
performance. Implementing these techniques effectively can significantly enhance the model's 
ability to perform well on real-world data. 

Transfer learning involves using a pre-trained model on a new, but related task. This 
approach leverages the knowledge gained from the original task, requiring less data and 
computation for the new task. Transfer learning is particularly useful when there is limited data 
available for training a deep learning model. It allows for faster development and deployment 
of models by building on existing, well-trained architectures. 

Several hyperparameters can be tuned to optimize the performance of deep learning 
models:  

- Learning Rate: Controls the step size during gradient descent. A smaller learning rate 
ensures convergence but requires more time.  

- Batch Size: The number of training examples used in one iteration. Smaller batch sizes 
provide more updates but are noisier.  

- Number of Epochs: The number of times the entire training dataset passes through the 
network. More epochs can improve learning but increase the risk of overfitting.  

- Dropout Rate: The fraction of neurons randomly dropped during training to prevent 
overfitting.  

- Number of Layers and Neurons: The depth and width of the neural network. More 
layers and neurons can capture complex patterns but increase computational cost. 
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Deep learning algorithms have transformed the landscape of artificial intelligence, 
enabling breakthroughs in various domains. By leveraging large datasets and powerful 
computational resources, deep learning models can achieve remarkable accuracy and 
efficiency. Tuning hyperparameters and employing techniques to prevent overfitting are crucial 
for optimizing the performance of deep learning models. As the field continues to evolve, deep 
learning remains at the forefront of AI research and application, driving innovation and 
discovery. 
 
C. Gradient Boosting Machine (GBM) Algorithm - builds an ensemble of weak prediction models, 
typically decision trees, in a sequential manner. Each subsequent model attempts to correct the errors 
made by the previous models, resulting in a highly accurate predictive model. GBM leverages the power 
of ensemble learning by combining multiple weak learners to form a strong learner. Each weak learner is 
a simple model, such as a decision tree with limited depth. By sequentially adding these weak learners, 
GBM improves the overall model performance significantly. The training process in GBM is sequential, 
where each model is trained to correct the errors of the preceding models. This is achieved by fitting the 
new model to the residuals (errors) of the previous model. As a result, each subsequent model focuses on 
the areas where the previous models performed poorly, enhancing the overall accuracy. 

GBM optimizes a specified loss function, such as mean squared error for regression or 
log-loss for classification. The algorithm minimizes this loss function by adding models that 
reduce the residuals of the previous models. This iterative process continues until the model 
performance converges or reaches a predefined number of iterations. 

The learning rate, also known as shrinkage, controls the contribution of each weak 
learner to the final model. A lower learning rate requires more trees to achieve the same 
reduction in error, but it often results in better generalization. Balancing the learning rate and 
the number of trees is crucial for optimizing the model's performance. 

Regularization techniques are employed in GBM to prevent overfitting and improve 
model generalization. Common regularization methods include limiting the depth of the trees, 
adding a penalty for the number of leaf nodes, and using subsampling. These techniques help 
in maintaining a balance between model complexity and predictive accuracy. 

GBM provides insights into feature importance, which helps in understanding the 
contribution of each feature to the model. Feature importance is determined by the reduction 
in the loss function attributed to each feature. This information can be valuable for feature 
selection and for gaining insights into the underlying data patterns. 

Several hyperparameters can be tuned to optimize the performance of GBM models:  
- Number of Trees (n_estimators): The number of boosting stages to be run. More trees can 
improve accuracy but also increase computational cost.  
- Learning Rate: Controls the step size during each iteration. A smaller learning rate requires 
more trees but can improve generalization.  
- Maximum Depth (max_depth): The maximum depth of the individual trees. Limiting depth 
helps prevent overfitting. 
- Minimum Samples Split (min_samples_split): The minimum number of samples required to 
split an internal node. Higher values prevent overfitting.  
- Minimum Samples Leaf (min_samples_leaf): The minimum number of samples required to 
be at a leaf node. It helps in smoothing the model.  
- Subsample: The fraction of samples used for fitting the individual base learners. Using a value 
less than 1.0 can prevent overfitting.  
- Loss Function: The specific loss function to be optimized, such as mean squared error for 
regression or log-loss for classification. 

Gradient Boosting Machine is a robust and versatile algorithm widely used for various 
predictive tasks. Its ability to build an ensemble of weak learners sequentially, focusing on 
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correcting errors, leads to high accuracy. By tuning hyperparameters and employing 
regularization techniques, GBM models can be optimized for specific datasets and tasks, 
making them a powerful tool in the machine learning toolkit. 
 
D. Stacked Ensemble Machine Learning Algorithm - combines multiple models, or base learners, to 
produce a stronger predictive model. The idea is to leverage the strengths of different models to improve 
overall performance and accuracy. Stacked ensembles are particularly useful for complex tasks where 
single models may not perform optimally. 

Stacked Ensemble method uses base learners, respectively individual models that are 
trained on the same dataset. These models can be of different types, such as decision trees, 
support vector machines, and neural networks. By combining diverse models, stacked 
ensembles can capture a wide range of patterns and relationships in the data. 

The meta-learner, or second-level model, is trained on the predictions of the base 
learners. Its role is to learn how to best combine the outputs of the base learners to make the 
final prediction. The meta-learner can be a simple model, such as linear regression, or a more 
complex one, like a neural network. 

Cross-validation is a critical component of building stacked ensembles. It involves 
partitioning the data into multiple folds and training the base learners on different subsets. This 
ensures that the meta-learner is trained on out-of-sample predictions, reducing the risk of 
overfitting. 

Diversity among base learners is key to the success of stacked ensembles. By using 
models that make different types of errors, the ensemble can reduce overall prediction error. 
Ensuring diversity can be achieved by varying the algorithms, hyperparameters, and training 
data used for the base learners. 

Stacked ensembles often outperform individual models because they aggregate the 
strengths of multiple models. They can handle a wider range of data complexities and improve 
generalization. This technique is particularly effective in competitions and real-world 
applications where predictive accuracy is paramount. 

Implementing stacked ensembles can be more complex compared to single models. It 
requires careful tuning of base learners, meta-learner, and the cross-validation strategy. Despite 
the complexity, the potential gains in performance often justify the additional effort. 

Several hyperparameters can be tuned to optimize the performance of stacked ensemble 
models:  

- Number and Type of Base Learners: Deciding how many and which types of models 
to include.  

- Meta-Learner Choice: Selecting the appropriate meta-learner to combine the 
predictions of base learners.  

- Cross-Validation Strategy: Choosing the number of folds and how to split the data for 
cross-validation.  

- Hyperparameters of Base Learners: Tuning the individual hyperparameters of each 
base learner to improve their performance.  

- Weighting of Base Learners: Deciding whether to weight the predictions of base 
learners differently based on their performance. 

Stacked ensemble algorithms are a robust and versatile tool in the machine learning 
toolkit. By combining multiple models, they leverage the strengths of each to deliver superior 
predictive performance. While the implementation can be complex, the potential benefits in 
terms of accuracy and generalization make stacked ensembles an attractive choice for 
challenging predictive tasks. 
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E. XGBoost Machine Learning Algorithm – high scalability, speed, and robust handling of large 
datasets with high dimensionality. XGBoost implements the gradient boosting framework, where models 
are built sequentially to correct the errors of previous models. This iterative process enhances the overall 
model performance by focusing on the hardest-to-predict examples. Each new model minimizes the 
residual errors of the previous models, leading to improved accuracy. 

XGBoost incorporates regularization techniques to prevent overfitting, which is a 
common issue in machine learning models. It includes L1 (Lasso) and L2 (Ridge) 
regularization terms in the objective function to penalize complex models. This regularization 
helps in maintaining a balance between model complexity and predictive power. 

One of the standout features of XGBoost is its ability to handle missing data effectively. 
During training, it automatically learns the best direction to handle missing values in the data. 
This capability makes XGBoost robust and reliable when dealing with real-world datasets that 
often contain missing values. 

XGBoost is designed for scalability and can handle large datasets efficiently. It supports 
parallel processing, allowing it to utilize multiple CPU cores for faster training. Additionally, 
XGBoost can be distributed across clusters, making it suitable for big data applications. 

Tree pruning in XGBoost is performed using a technique called 'max depth' to limit the 
depth of trees. This prevents the model from becoming too complex and overfitting the training 
data. Pruning ensures that the trees remain manageable and improves the model's 
generalization ability. 

XGBoost provides insights into feature importance, helping to understand which 
features contribute the most to the predictions. Feature importance can be measured using 
metrics such as gain, cover, and frequency. This information is valuable for feature selection 
and for gaining deeper insights into the data. 

Several hyperparameters can be tuned to optimize the performance of XGBoost 
models:  

- Learning Rate (eta): Controls the contribution of each tree. A lower learning rate 
requires more trees but can improve generalization.  

- Number of Trees (n_estimators): The number of boosting rounds. More trees can 
enhance accuracy but increase computational cost.  

- Maximum Depth (max_depth): The maximum depth of each tree. Deeper trees can 
capture more information but are prone to overfitting.  

- Subsample: The fraction of samples used for training each tree. Lower values prevent 
overfitting but might increase bias.  

- Colsample_bytree: The fraction of features used for training each tree. This adds 
randomness and can improve model robustness.  

- Gamma: Minimum loss reduction required to make a split. Higher values prevent 
overfitting by making the algorithm more conservative. 

XGBoost is a highly efficient and versatile machine learning algorithm widely used for 
various predictive tasks. Its ability to handle large datasets, incorporate regularization, and 
provide insights into feature importance makes it a valuable tool. By tuning its hyperparameters 
and leveraging its scalability, XGBoost can be optimized for specific datasets and applications, 
ensuring high performance and accuracy. 
 
ML phyton code  
 

The figure 3 presents the phyton main code segments, optimized and used for 
accomplishing all the analytical framework flow within the present study.   
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Fig. 3. The AutoML process code for determining the dependent variables based on the 

dataset curation performed as a result of sampling and analytical procedures 
 
ML models accuracy 
 
 For predicting Fe concentration in water, all XGBoost, GBM, Stackedensemble (STE) 
and DRF recorded high metrics (R-sq > 0.9), while DeepLearning (DL) algorithms indicate an 
R-sq > 0.8 (fig. 4). Thus, Fe has significant potential to be integrated into a black-box ML-
based sensor, considering the actual structure of the dataset.  
 In terms of Zn concentration in water (fig. 5), the ML models’ accuracy metrics are 
lower, compared to Fe, with STE leading, followed by DL and XGBoost, all slightly over the 
R-sq value of 0.7. Thus, STE is recommended to be considered as a main ML tool for the future 
optimization of the prediction framework associated with Zn concentration in water matrix. 
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Fig. 4.The accuracy of the main ML 

algorithms tested for the prediction of Fe 
concentration in water 

Fig. 5. The accuracy of the main ML 
algorithms tested for the prediction of Zn 

concentration in water 
  
 The algorithm rating in predicting Cd, Ni and Cr concentration in water is similar to 
the Zn concluded results, ranking STE in the first place and linking DRF to the lowest accuracy 
metrics (fig. 6 - 8). Also, in terms of sediments prediction, the situation reveals STE with the 
highest metrics, followed by DL and XGBoost, with an R-sq just above 0.7. It seems that DRF 
gives rather modest accuracy, for almost all dependent variables tested in present framework.  

  
Fig. 6. The accuracy of the main ML 

algorithms tested for the prediction of Cd 
concentration in water 

Fig. 7. The accuracy of the main ML 
algorithms tested for the prediction of Cr 

concentration in water 
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Fig. 8. The accuracy of the main ML algorithms tested for the prediction of Ni 
concentration in water 

 
ML models feature importance 
 
 In terms of the future importance of the predictors used for predicting Fe concentration 
in the water matrix, it can be observed that BOD5, N-NH4, NT and pH have the highest impact 
(fig. 9), a situation that is significantly different compared to the model which quantifies the 
impact of predictors on Zn concentration in water, influenced mainly by Fe and Cd 
concentration, as well as by N-NO2 (fig. 10) 

  
Fig. 9. The average feature importance of 
each analytical framework predictor, in 

determining the Fe concentration in water 

Fig. 10. The average feature importance of 
each analytical framework predictor, in 

determining the Zn concentration in water 
 
 The Ni concentration is associated with the highest feature importance when it comes 
to predicting both Cd and Cr concentrations in the water (fig. 11-12). However, in terms of 
predicting Cd concentration in water, a series of parameters such as NT, Cr, BOD5, N-NH4, 
pH, DO and Zn must be also considered since they form a complex conditioning matrix (fig. 
11). The N-NO2 and Fe can be rate as secondary predictors, considering their future importance 
in predicting Cr concentration in water (fig. 12). The prediction model for Ni concentration in 
water (fig. 13) is mainly conditioned by Fe, Cd and Cr concentration in water column. 
 

  
Fig. 11. The average feature importance of 

each analytical framework predictor, in 
determining the Cd concentration in water 

Fig. 12. The average feature importance of 
each analytical framework predictor, in 

determining the Cr concentration in water 
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Fig. 13. The average feature importance of each analytical framework predictor, in 

determining the Ni concentration in water 
 
 If considering the resulting sediment prediction models, based on fewer predictors 
compared to water quality ML models, it can be concluded that Ni concentration in sediments 
can be predicted mostly based on Zn concentration in sediments (fig. 14), while the prediction 
of Cr concentration in sediments involves, mostly, the Fe, as a main predictor, and Zn, as a 
secondary predictor (fig. 15). 
 The Ni and Cr concentrations in sediments are associated with the highest feature 
importance in predicting Zn concentration in sediments (fig. 16), while Cr is the main predictor 
in the prediction model of the Fe concentration in sediments (fig. 17).  

  
Fig. 14. The average feature importance of 

each analytical framework predictor, in 
determining the Ni concentration in 

sediments 

Fig. 15. The average feature importance of 
each analytical framework predictor, in 

determining the Cr concentration in 
sediments 

  
Fig. 16. The average feature importance of 

each analytical framework predictor, in 
determining the Zn concentration in 

sediments 

Fig. 17. The average feature importance of 
each analytical framework predictor, in 

determining the Fe concentration in 
sediments 
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It can be concluded that autoML can offer high efficiency in the design of a machine-
learning-based analytical framework that can be used, further on, as a support tool for the 
development of black-box sensors for the evaluation of water and sediment-quality. Also,  in 
most cases, STE, XGBoost and DL performance was superior, compared to GBM and DRF 
algorithms. The feature importance value indicates complex and peculiar links between the 
various predicted dependent variables and the predictors set, emphasizing the importance of 
the background (e.g. dataset structure, number of inputs, possible environmental disruptive 
factors etc) in creating a high-accuracy machine-learning-based predictive analytical 
framework. Future in-situ sampling champaigns, followed by analytical procedures, are to be 
performed in order to develop/extend the existing dataset and to optimize the already obtained 
models, in order to increase their reliability. Also, various algorithms are to be identified and 
tested in the near future, in order to verify their potential to generate added value to the already 
existing analytical framework. 
 
 
 
 
 
 
 


