
 1

Machine-learning-based analytical framework as a support tool for water and
sediments quality black-box sensors

Data curation and analytical framework flow

The developed analytical framework is based on a dataset that included inputs generated, as a
result of analytical procedures (real data obtained from in-situ sampling and laboratory analysis of both
water and sediment samples from the sample points presented in figure 1).

Fig. 1. Water and sediments sample points from the studied area

 Therefore, the resulted numerical dataset was used as emphasised in figure 2.

Figure 2. The analytical framework flow

It can be observed that the autoML script was used in order to identify various ML-based
algorithms’ performance (revealed by the accuracy metrics) in predicting the feature
importance of the independent variables. Various scenarios were used, targeting to create the

 2

baseline for determining Fe, Zn, Cd, Cr, and Ni from both water and sediments, in the studied
area. The results have targeted to identify the main groups of ML algorithms, that gather
different secondary algorithms, characterised by the variations of hyperparameters, that are
associated with the highest predictive metrics. Also, for the identified main ML algorithms, an
average value of feature importance associated with each of the independent variables will
result and, further on, emphasize the power of the predictors in predicting the main dependent
variable.

Main ML algorithms used for training and validation
 The following main ML algorithms were used:
A. Decision Random Forest (DRF) Machine Learning Algorithm - an ensemble learning method
that constructs multiple decision trees during training and outputs the mean prediction (regression) or
mode of the classes (classification) of the individual trees. This method is widely used due to its
robustness, accuracy, and ease of use. It is a versatile algorithm that can handle both classification and
regression tasks effectively. DRF leverages the power of multiple decision trees to improve the model's
performance. Each tree is trained on a random subset of the data, ensuring diversity and reducing the risk
of overfitting. By combining the predictions from multiple trees, the algorithm achieves higher accuracy
and stability compared to individual decision trees. The algorithm uses bagging, where each decision tree
is trained on a bootstrapped sample of the training data. This technique helps in reducing variance and
improving the stability and accuracy of the model. Bagging ensures that each tree is different, which
enhances the overall performance of the ensemble. During the construction of each tree, DRF randomly
selects a subset of features to consider for splitting at each node. This randomness helps in creating a
diverse set of trees, further enhancing the model's robustness. Random feature selection prevents the
model from relying too heavily on any single feature, improving generalization. In classification tasks,
DRF uses majority voting to determine the final output. For regression tasks, it averages the predictions
of individual trees. This ensemble approach mitigates the impact of noisy or inaccurate individual trees,
leading to more reliable predictions. By combining multiple trees that are trained on different parts of the
dataset with different features, DRF effectively reduces overfitting, leading to a more generalized model.
The use of ensemble methods and randomization techniques makes DRF robust against overfitting, even
with complex datasets. DRF can provide insights into feature importance by measuring how much each
feature decreases the impurity in a tree. This can be valuable for understanding the underlying patterns in
the data and for feature selection. Feature importance scores help in identifying the most influential
features in the dataset, guiding further data analysis and model improvement.

Several hyperparameters can be tuned to optimize the performance of the DRF
algorithm:

- Number of Trees (n_estimators): The number of trees in the forest. More trees can
improve performance but also increase computational cost.

- Maximum Depth (max_depth): The maximum depth of each tree. Limiting depth
helps prevent overfitting.

- Minimum Samples Split (min_samples_split): The minimum number of samples
required to split an internal node. Higher values prevent overfitting.

- Minimum Samples Leaf (min_samples_leaf): The minimum number of samples
required to be at a leaf node. Setting this parameter can smooth the model.

- Maximum Features (max_features): The number of features to consider when looking
for the best split. It introduces randomness to make individual trees more diverse.

- Bootstrap: Whether bootstrap samples are used when building trees. If False, the
whole dataset is used to build each tree.

The DRF algorithm is a powerful tool in machine learning, capable of handling both
classification and regression tasks effectively. Its ensemble nature, combined with techniques
like bagging and random feature selection, makes it robust against overfitting and highly

 3

accurate. By tuning various hyperparameters, the performance of the DRF can be optimized
for specific datasets and tasks, making it a versatile choice for many applications.

B. Deep Learning Algorithm - uses neural networks with many layers (hence the term 'deep'). These
algorithms are designed to recognize patterns, learn from data, and make decisions with minimal human
intervention. Deep learning has revolutionized fields such as computer vision, natural language
processing, and speech recognition. Its ability to process and learn from large datasets has led to significant
advancements in AI capabilities. At the core of deep learning are neural networks, which are inspired by
the structure and function of the human brain. A neural network consists of an input layer, multiple hidden
layers, and an output layer. Each layer contains neurons (nodes) that are connected with weights, allowing
the network to learn complex representations of data. The architecture of these networks enables them to
capture hierarchical patterns, making them effective for a wide range of tasks.The training process
involves feeding data into the neural network, where it undergoes forward propagation and
backpropagation. In forward propagation, the input data passes through the network, and predictions are
made. During backpropagation, the network adjusts the weights based on the error of the predictions,
iteratively improving its accuracy. This process is repeated over many iterations, or epochs, to minimize
the loss function and enhance the model's performance. Activation functions introduce non-linearity into
the neural network, enabling it to learn and represent complex patterns. Common activation functions
include ReLU (Rectified Linear Unit), sigmoid, and tanh. These functions help the network capture
intricate relationships within the data, enhancing its predictive power. Choosing the right activation
function is crucial for the network's ability to converge and learn effectively.

There are various types of neural networks, each suited for different tasks.
Convolutional Neural Networks (CNNs) are primarily used for image recognition and
processing. Recurrent Neural Networks (RNNs) are effective for sequential data, such as time
series or natural language. Other types include Generative Adversarial Networks (GANs) for
generating new data and Transformer networks for handling sequential data efficiently.

Deep learning models are prone to overfitting due to their high capacity to learn from
data. Techniques such as dropout, regularization, and early stopping are used to prevent
overfitting. These methods help the model generalize better to new, unseen data, improving its
performance. Implementing these techniques effectively can significantly enhance the model's
ability to perform well on real-world data.

Transfer learning involves using a pre-trained model on a new, but related task. This
approach leverages the knowledge gained from the original task, requiring less data and
computation for the new task. Transfer learning is particularly useful when there is limited data
available for training a deep learning model. It allows for faster development and deployment
of models by building on existing, well-trained architectures.

Several hyperparameters can be tuned to optimize the performance of deep learning
models:

- Learning Rate: Controls the step size during gradient descent. A smaller learning rate
ensures convergence but requires more time.

- Batch Size: The number of training examples used in one iteration. Smaller batch sizes
provide more updates but are noisier.

- Number of Epochs: The number of times the entire training dataset passes through the
network. More epochs can improve learning but increase the risk of overfitting.

- Dropout Rate: The fraction of neurons randomly dropped during training to prevent
overfitting.

- Number of Layers and Neurons: The depth and width of the neural network. More
layers and neurons can capture complex patterns but increase computational cost.

 4

Deep learning algorithms have transformed the landscape of artificial intelligence,
enabling breakthroughs in various domains. By leveraging large datasets and powerful
computational resources, deep learning models can achieve remarkable accuracy and
efficiency. Tuning hyperparameters and employing techniques to prevent overfitting are crucial
for optimizing the performance of deep learning models. As the field continues to evolve, deep
learning remains at the forefront of AI research and application, driving innovation and
discovery.

C. Gradient Boosting Machine (GBM) Algorithm - builds an ensemble of weak prediction models,
typically decision trees, in a sequential manner. Each subsequent model attempts to correct the errors
made by the previous models, resulting in a highly accurate predictive model. GBM leverages the power
of ensemble learning by combining multiple weak learners to form a strong learner. Each weak learner is
a simple model, such as a decision tree with limited depth. By sequentially adding these weak learners,
GBM improves the overall model performance significantly. The training process in GBM is sequential,
where each model is trained to correct the errors of the preceding models. This is achieved by fitting the
new model to the residuals (errors) of the previous model. As a result, each subsequent model focuses on
the areas where the previous models performed poorly, enhancing the overall accuracy.

GBM optimizes a specified loss function, such as mean squared error for regression or
log-loss for classification. The algorithm minimizes this loss function by adding models that
reduce the residuals of the previous models. This iterative process continues until the model
performance converges or reaches a predefined number of iterations.

The learning rate, also known as shrinkage, controls the contribution of each weak
learner to the final model. A lower learning rate requires more trees to achieve the same
reduction in error, but it often results in better generalization. Balancing the learning rate and
the number of trees is crucial for optimizing the model's performance.

Regularization techniques are employed in GBM to prevent overfitting and improve
model generalization. Common regularization methods include limiting the depth of the trees,
adding a penalty for the number of leaf nodes, and using subsampling. These techniques help
in maintaining a balance between model complexity and predictive accuracy.

GBM provides insights into feature importance, which helps in understanding the
contribution of each feature to the model. Feature importance is determined by the reduction
in the loss function attributed to each feature. This information can be valuable for feature
selection and for gaining insights into the underlying data patterns.

Several hyperparameters can be tuned to optimize the performance of GBM models:
- Number of Trees (n_estimators): The number of boosting stages to be run. More trees can
improve accuracy but also increase computational cost.
- Learning Rate: Controls the step size during each iteration. A smaller learning rate requires
more trees but can improve generalization.
- Maximum Depth (max_depth): The maximum depth of the individual trees. Limiting depth
helps prevent overfitting.
- Minimum Samples Split (min_samples_split): The minimum number of samples required to
split an internal node. Higher values prevent overfitting.
- Minimum Samples Leaf (min_samples_leaf): The minimum number of samples required to
be at a leaf node. It helps in smoothing the model.
- Subsample: The fraction of samples used for fitting the individual base learners. Using a value
less than 1.0 can prevent overfitting.
- Loss Function: The specific loss function to be optimized, such as mean squared error for
regression or log-loss for classification.

Gradient Boosting Machine is a robust and versatile algorithm widely used for various
predictive tasks. Its ability to build an ensemble of weak learners sequentially, focusing on

 5

correcting errors, leads to high accuracy. By tuning hyperparameters and employing
regularization techniques, GBM models can be optimized for specific datasets and tasks,
making them a powerful tool in the machine learning toolkit.

D. Stacked Ensemble Machine Learning Algorithm - combines multiple models, or base learners, to
produce a stronger predictive model. The idea is to leverage the strengths of different models to improve
overall performance and accuracy. Stacked ensembles are particularly useful for complex tasks where
single models may not perform optimally.

Stacked Ensemble method uses base learners, respectively individual models that are
trained on the same dataset. These models can be of different types, such as decision trees,
support vector machines, and neural networks. By combining diverse models, stacked
ensembles can capture a wide range of patterns and relationships in the data.

The meta-learner, or second-level model, is trained on the predictions of the base
learners. Its role is to learn how to best combine the outputs of the base learners to make the
final prediction. The meta-learner can be a simple model, such as linear regression, or a more
complex one, like a neural network.

Cross-validation is a critical component of building stacked ensembles. It involves
partitioning the data into multiple folds and training the base learners on different subsets. This
ensures that the meta-learner is trained on out-of-sample predictions, reducing the risk of
overfitting.

Diversity among base learners is key to the success of stacked ensembles. By using
models that make different types of errors, the ensemble can reduce overall prediction error.
Ensuring diversity can be achieved by varying the algorithms, hyperparameters, and training
data used for the base learners.

Stacked ensembles often outperform individual models because they aggregate the
strengths of multiple models. They can handle a wider range of data complexities and improve
generalization. This technique is particularly effective in competitions and real-world
applications where predictive accuracy is paramount.

Implementing stacked ensembles can be more complex compared to single models. It
requires careful tuning of base learners, meta-learner, and the cross-validation strategy. Despite
the complexity, the potential gains in performance often justify the additional effort.

Several hyperparameters can be tuned to optimize the performance of stacked ensemble
models:

- Number and Type of Base Learners: Deciding how many and which types of models
to include.

- Meta-Learner Choice: Selecting the appropriate meta-learner to combine the
predictions of base learners.

- Cross-Validation Strategy: Choosing the number of folds and how to split the data for
cross-validation.

- Hyperparameters of Base Learners: Tuning the individual hyperparameters of each
base learner to improve their performance.

- Weighting of Base Learners: Deciding whether to weight the predictions of base
learners differently based on their performance.

Stacked ensemble algorithms are a robust and versatile tool in the machine learning
toolkit. By combining multiple models, they leverage the strengths of each to deliver superior
predictive performance. While the implementation can be complex, the potential benefits in
terms of accuracy and generalization make stacked ensembles an attractive choice for
challenging predictive tasks.

 6

E. XGBoost Machine Learning Algorithm – high scalability, speed, and robust handling of large
datasets with high dimensionality. XGBoost implements the gradient boosting framework, where models
are built sequentially to correct the errors of previous models. This iterative process enhances the overall
model performance by focusing on the hardest-to-predict examples. Each new model minimizes the
residual errors of the previous models, leading to improved accuracy.

XGBoost incorporates regularization techniques to prevent overfitting, which is a
common issue in machine learning models. It includes L1 (Lasso) and L2 (Ridge)
regularization terms in the objective function to penalize complex models. This regularization
helps in maintaining a balance between model complexity and predictive power.

One of the standout features of XGBoost is its ability to handle missing data effectively.
During training, it automatically learns the best direction to handle missing values in the data.
This capability makes XGBoost robust and reliable when dealing with real-world datasets that
often contain missing values.

XGBoost is designed for scalability and can handle large datasets efficiently. It supports
parallel processing, allowing it to utilize multiple CPU cores for faster training. Additionally,
XGBoost can be distributed across clusters, making it suitable for big data applications.

Tree pruning in XGBoost is performed using a technique called 'max depth' to limit the
depth of trees. This prevents the model from becoming too complex and overfitting the training
data. Pruning ensures that the trees remain manageable and improves the model's
generalization ability.

XGBoost provides insights into feature importance, helping to understand which
features contribute the most to the predictions. Feature importance can be measured using
metrics such as gain, cover, and frequency. This information is valuable for feature selection
and for gaining deeper insights into the data.

Several hyperparameters can be tuned to optimize the performance of XGBoost
models:

- Learning Rate (eta): Controls the contribution of each tree. A lower learning rate
requires more trees but can improve generalization.

- Number of Trees (n_estimators): The number of boosting rounds. More trees can
enhance accuracy but increase computational cost.

- Maximum Depth (max_depth): The maximum depth of each tree. Deeper trees can
capture more information but are prone to overfitting.

- Subsample: The fraction of samples used for training each tree. Lower values prevent
overfitting but might increase bias.

- Colsample_bytree: The fraction of features used for training each tree. This adds
randomness and can improve model robustness.

- Gamma: Minimum loss reduction required to make a split. Higher values prevent
overfitting by making the algorithm more conservative.

XGBoost is a highly efficient and versatile machine learning algorithm widely used for
various predictive tasks. Its ability to handle large datasets, incorporate regularization, and
provide insights into feature importance makes it a valuable tool. By tuning its hyperparameters
and leveraging its scalability, XGBoost can be optimized for specific datasets and applications,
ensuring high performance and accuracy.

ML phyton code

The figure 3 presents the phyton main code segments, optimized and used for
accomplishing all the analytical framework flow within the present study.

 7

Fig. 3. The AutoML process code for determining the dependent variables based on the

dataset curation performed as a result of sampling and analytical procedures

ML models accuracy

 For predicting Fe concentration in water, all XGBoost, GBM, Stackedensemble (STE)
and DRF recorded high metrics (R-sq > 0.9), while DeepLearning (DL) algorithms indicate an
R-sq > 0.8 (fig. 4). Thus, Fe has significant potential to be integrated into a black-box ML-
based sensor, considering the actual structure of the dataset.
 In terms of Zn concentration in water (fig. 5), the ML models’ accuracy metrics are
lower, compared to Fe, with STE leading, followed by DL and XGBoost, all slightly over the
R-sq value of 0.7. Thus, STE is recommended to be considered as a main ML tool for the future
optimization of the prediction framework associated with Zn concentration in water matrix.

 8

Fig. 4.The accuracy of the main ML

algorithms tested for the prediction of Fe
concentration in water

Fig. 5. The accuracy of the main ML
algorithms tested for the prediction of Zn

concentration in water

 The algorithm rating in predicting Cd, Ni and Cr concentration in water is similar to
the Zn concluded results, ranking STE in the first place and linking DRF to the lowest accuracy
metrics (fig. 6 - 8). Also, in terms of sediments prediction, the situation reveals STE with the
highest metrics, followed by DL and XGBoost, with an R-sq just above 0.7. It seems that DRF
gives rather modest accuracy, for almost all dependent variables tested in present framework.

Fig. 6. The accuracy of the main ML

algorithms tested for the prediction of Cd
concentration in water

Fig. 7. The accuracy of the main ML
algorithms tested for the prediction of Cr

concentration in water

 9

Fig. 8. The accuracy of the main ML algorithms tested for the prediction of Ni
concentration in water

ML models feature importance

 In terms of the future importance of the predictors used for predicting Fe concentration
in the water matrix, it can be observed that BOD5, N-NH4, NT and pH have the highest impact
(fig. 9), a situation that is significantly different compared to the model which quantifies the
impact of predictors on Zn concentration in water, influenced mainly by Fe and Cd
concentration, as well as by N-NO2 (fig. 10)

Fig. 9. The average feature importance of
each analytical framework predictor, in

determining the Fe concentration in water

Fig. 10. The average feature importance of
each analytical framework predictor, in

determining the Zn concentration in water

 The Ni concentration is associated with the highest feature importance when it comes
to predicting both Cd and Cr concentrations in the water (fig. 11-12). However, in terms of
predicting Cd concentration in water, a series of parameters such as NT, Cr, BOD5, N-NH4,
pH, DO and Zn must be also considered since they form a complex conditioning matrix (fig.
11). The N-NO2 and Fe can be rate as secondary predictors, considering their future importance
in predicting Cr concentration in water (fig. 12). The prediction model for Ni concentration in
water (fig. 13) is mainly conditioned by Fe, Cd and Cr concentration in water column.

Fig. 11. The average feature importance of

each analytical framework predictor, in
determining the Cd concentration in water

Fig. 12. The average feature importance of
each analytical framework predictor, in

determining the Cr concentration in water

 10

Fig. 13. The average feature importance of each analytical framework predictor, in

determining the Ni concentration in water

 If considering the resulting sediment prediction models, based on fewer predictors
compared to water quality ML models, it can be concluded that Ni concentration in sediments
can be predicted mostly based on Zn concentration in sediments (fig. 14), while the prediction
of Cr concentration in sediments involves, mostly, the Fe, as a main predictor, and Zn, as a
secondary predictor (fig. 15).
 The Ni and Cr concentrations in sediments are associated with the highest feature
importance in predicting Zn concentration in sediments (fig. 16), while Cr is the main predictor
in the prediction model of the Fe concentration in sediments (fig. 17).

Fig. 14. The average feature importance of

each analytical framework predictor, in
determining the Ni concentration in

sediments

Fig. 15. The average feature importance of
each analytical framework predictor, in

determining the Cr concentration in
sediments

Fig. 16. The average feature importance of

each analytical framework predictor, in
determining the Zn concentration in

sediments

Fig. 17. The average feature importance of
each analytical framework predictor, in

determining the Fe concentration in
sediments

 11

It can be concluded that autoML can offer high efficiency in the design of a machine-
learning-based analytical framework that can be used, further on, as a support tool for the
development of black-box sensors for the evaluation of water and sediment-quality. Also, in
most cases, STE, XGBoost and DL performance was superior, compared to GBM and DRF
algorithms. The feature importance value indicates complex and peculiar links between the
various predicted dependent variables and the predictors set, emphasizing the importance of
the background (e.g. dataset structure, number of inputs, possible environmental disruptive
factors etc) in creating a high-accuracy machine-learning-based predictive analytical
framework. Future in-situ sampling champaigns, followed by analytical procedures, are to be
performed in order to develop/extend the existing dataset and to optimize the already obtained
models, in order to increase their reliability. Also, various algorithms are to be identified and
tested in the near future, in order to verify their potential to generate added value to the already
existing analytical framework.

